

PanPA

PanPA is a command line tool written in Cython for building and alignments of panproteome graphs. The code base can be found Here[#1].

The idea here is that given a set of MSAs of protein sequences (whether it is the same protein or a protein cluster), each MSA is turned into a Directed Acyclic Graph (DAG) in GFA[#2] format, indexes each MSA using k-mers or (w, k)-minimizers, and align DNA and amino acid sequences back to these graph using the index to find matches to the graph.

The alignment is done using Partial Order Alignment algorithm and the user can choose different substitution matrices and gap penalty score.

More on usage and commands can be found in Subcommands

[image: _images/pipeline_v3.png]

Installation

PanPA is easy to install through the setup.py script, the only requirement is Cython and Python >= 3.6. You can install PanPA locally with python3 setup.py install --user if you do not have root access to the operating system you’re working on.

You can also use the environment.yml file to generate a conda or virtual Python environment and install PanPA there.

Contents

	Subcommands
	Building GFAs

	Indexing MSAs

	Align Query Sequences

	Align to Single Graph

	Full Experiment
	Requirements

	Data

	Step 1: Download annotations

	Step 2: Separating into groups

	Step 3: Generating clusters with mmseqs

	Step 4: Generating MSAs from clusters

	Step 5: MSA to GFA

	Step 6: Indexing

	Step 7: Aligning

	Other Info
	GAF Format

	DNA to DNA

Footnotes

[#1]
https://github.com/fawaz-dabbaghieh/PanPA

[#2]
http://gfa-spec.github.io/GFA-spec/GFA1.html

Subcommands

PanPA is separated into 3 subcommands that can be run independently:

	Building GFA graphs from set of input MSAs with build_gfa

	Indexing the set of MSAs which corresponds to the set of produced GFAs with build_index

	Aligning query DNA or AA sequences back to the graphs produced with align

Building GFAs

In this step, PanPA can take as input a directory with MSAs in FASTA format, a text file with a list of input MSAs with each file in one line, or simply input MSAs as command arguments and outputs the corresponding graphs of each MSA in an output directory. The idea here is that there’s a 1 to 1 correspondence between the MSAs and the graphs, so later on, the index built from the MSAs can be used to also match against the graphs.

build_gfa input arguments

usage: PanPA build_gfa [-h] [-f IN_FILES [IN_FILES ...]] [-l IN_LIST] [-d IN_DIR] [-c CORES] [-o OUT_DIR]

optional arguments:
 -h, --help show this help message and exit
 -f IN_FILES [IN_FILES ...], --fasta_files IN_FILES [IN_FILES ...]
 Input MSA(s) in fasta format, one or more file space-separated
 -l IN_LIST, --fasta_list IN_LIST
 a text file with all input MSAs paths each on one new line
 -d IN_DIR, --in_dir IN_DIR
 Directory path containing one or more amino acid MSA in FASTA format (gzipped allowed)
 -c CORES, --cores CORES
 Numbers of cores to use for aligning
 -o OUT_DIR, --out_dir OUT_DIR
 Output directory where the index files and graphs from the MSAs are stored

Indexing MSAs

The subommands build_index takes the set of MSAs as input, and for each sequence in the MSA, seeds are extracted, the user can specify two types of seeds here, 1) k-mers or 2) (w,k)-minimizers using the argument --seeding_alg which takes either k_mers or wk_min, then
the user can to specify the k size with -k, --kmer_size and w size with -w, --window or keep the default values. The user also needs to give an output file name/location.

The --seed_limit argument takes an integer, which specifies a limit to how many MSAs (or graphs) can one seed belong to.
E.g. one k-mer can be present in all MSAs given, the user can specify a limit on that, and the matches are ordered
based on how many times that seed was present in that MSA and the top n will be taken. If the user chooses to keep all hits, then 0 is given to this argument and all seed hits will be kept in the index, i.e. with 0, all matching MSAs/Graphs will be used for alignments

build_index input arguments

usage: PanPA build_index [-h] [-f IN_FILES [IN_FILES ...]] [-l IN_LIST] [-d IN_DIR] [-o OUT_INDEX]
 [--seeding_alg SEEDING_ALG] [-k K-MER] [-w WINDOW] [--seed_limit SEED_LIMIT]

optional arguments:
 -h, --help show this help message and exit
 -f IN_FILES [IN_FILES ...], --fasta_files IN_FILES [IN_FILES ...]
 Input MSA(s) in fasta format, one or more file space-separated
 -l IN_LIST, --fasta_list IN_LIST
 a text file with all input MSAs paths each on one new line
 -d IN_DIR, --in_dir IN_DIR
 Directory path containing one or more amino acid MSA in FASTA format (gzipped allowed)
 -o OUT_INDEX, --out_index OUT_INDEX
 The output index file name
 --seeding_alg SEEDING_ALG
 Seeding algorithm. Choices: k_mers, wk_min. Default: k_mers
 -k K-MER, --kmer_size K-MER
 K-mer size for indexing the sequencing. Default: 5
 -w WINDOW, --window WINDOW
 Window size when using w,k-minimizers instead of k-mers for indexing. Default:8
 --seed_limit SEED_LIMIT
 Indicates how many graphs can a seed belong to. Default: 5, give 0 for no limit

Align Query Sequences

For aligning query sequences to the graphs, you need to give three main inputs to the subcommand align:

1- The index that was built with build_index subcommand
2- The input graphs that were built from the same set of MSAs that were used for building the index, the set of grpahs which can be a directory, a text file with list, or given directly in the command.
3- The query sequences in FASTA. If DNA sequences are given, then the user needs to use the flag --dna which will then run the frameshift aware alignment algorithm on both the forward and reverse complement of each DNA query sequence.

The user can also specify the substitution matrix to use for the alignment, or print a list of possible matrices with --sub_matrix_list. The user can also specify a certain gap score with --gap_score, a cutoff on alignment id with --min_id_score, and can set a limit to how many graphs to align to with --seed_limit.
This step can be made faster by giving more cores.
If DNA sequences were aligned to graphs that were build from DNA sequences, then please read about this in the Other Info section.

The output alignment are in GAF format. To learn more about this format please check here[#1], moreover, the Other Info section has some extra information about the output file.

align input arguments

usage: PanPA align [-h] [-g IN_FILES [IN_FILES ...]] [-l IN_LIST] [-d GRAPHS] [--index INDEX]
 [-r SEQS] [--dna] [-c CORES] [--sub_matrix SUB_MATRIX] [--sub_matrix_list]
 [-o GAF] [--gap_score GAP_SCORE] [--min_id_score MIN_ID_SCORE]
 [--seed_limit SEED_LIMIT]

options:
 -h, --help show this help message and exit
 -g IN_FILES [IN_FILES ...], --gfa_files IN_FILES [IN_FILES ...]
 Input GFA graphs, one or more file space-separated
 -l IN_LIST, --gfa_list IN_LIST
 a text file with all input graphs paths each on one new line
 -d GRAPHS, --in_dir GRAPHS
 Path to directory with GFA files
 --index INDEX Path to pickled index file generated in the build step
 -r SEQS, --seqs SEQS The input sequences to align in fasta format
 --dna Give this flag if the query sequences are DNA and not AA
 -c CORES, --cores CORES
 Numbers of cores to use for aligning
 --sub_matrix SUB_MATRIX
 Substitution matrix to use for alignment, default: blosum62
 --sub_matrix_list When given, a list of possible substitution matrices will be given
 -o GAF, --out_gaf GAF
 Output alignments file path
 --gap_score GAP_SCORE
 The gap score to use for the alignment, default: -3
 --min_id_score MIN_ID_SCORE
 minimum alignment identity score for the alignment to be outputted, [0,1]
 --seed_limit SEED_LIMIT
 How many graphs can each seed from the query sequence have hits to,
 default: 3

Align to Single Graph

The user can avoid the extracting seeds step when aligning sequences if the user wants to align to a specific target graph by using the align_single subcommand.

In this subcommand, the user needs to provide a target graph in GFA format, the graph has to be a DAG (directed and acyclic), and query sequences in FASTA format.

align to single target

usage: PanPA align_single [-h] [-g IN_GRAPH] [-r SEQS] [--dna] [-c CORES] [--sub_matrix SUB_MATRIX]
 [--sub_matrix_list] [-o GAF] [--gap_score GAP_SCORE]
 [--min_id_score MIN_ID_SCORE]

options:
 -h, --help show this help message and exit
 -g IN_GRAPH, --gfa_files IN_GRAPH
 Input GFA graph to align against
 -r SEQS, --seqs SEQS The input sequences to align in fasta format
 --dna Give this flag if the query sequences are DNA and not AA
 -c CORES, --cores CORES
 Numbers of cores to use for aligning
 --sub_matrix SUB_MATRIX
 Substitution matrix to use for alignment, default: blosum62
 --sub_matrix_list When given, a list of possible substitution matrices will be given
 -o GAF, --out_gaf GAF
 Output alignments file path
 --gap_score GAP_SCORE
 The gap score to use for the alignment, default: -3
 --min_id_score MIN_ID_SCORE
 minimum alignment identity score for the alignment to be outputted, [0,1]

Footnotes

[#1]
https://github.com/lh3/gfatools/blob/master/doc/rGFA.md

Full Experiment

Here we describe a full working example of how to use PanPA to generate a panproteome of some assemblies and perform alignments with query sequences against this panproteome. We will collect annotations from NCBI of
10 E. coli assemblies. The general steps are:

	Downloading annotations of the example assemblies

	Separating the downloaded into two groups, one for building the Panproteome and one for alignment (leave one out)

	Generating protein clusters

	Generating MSAs from the protein clusters

	Generating graphs in GFA format from the MSAs

	Indexing the set of MSAs/GFAs

	Aligning the left-out samples back to the generated panproteome

Requirements

For this example, you need to install PanPA, mmseqs for clustering, and some MSA software
like clustalo for example. You can get mmseqs using conda, brew, docker, or simply downloading the
precompiled version with wget https://mmseqs.com/latest/mmseqs-linux-avx2.tar.gz; tar xvfz mmseqs-linux-avx2.tar.gz

Data

In this example, we will be using 10 E. coli assemblies/annotations randomly selected from RefSeq. The list of ftp
links are listed in ftp_links.txt Here[#1]

	Accession

	FTP Link

	GCF_000002515.2

	https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/515/GCF_000002515.2_ASM251v1

	GCF_000002725.2

	https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/725/GCF_000002725.2_ASM272v2

	GCF_000002985.6

	https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/985/GCF_000002985.6_WBcel235

	GCF_000005825.2

	https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/825/GCF_000005825.2_ASM582v2

	GCF_000005845.2

	https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/845/GCF_000005845.2_ASM584v2

	GCF_000006605.1

	https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/006/605/GCF_000006605.1_ASM660v1

	GCF_000006625.1

	https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/006/625/GCF_000006625.1_ASM662v1

	GCF_000006645.1

	https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/006/645/GCF_000006645.1_ASM664v1

	GCF_000006725.1

	https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/006/725/GCF_000006725.1_ASM672v1

Step 1: Download annotations

To download the annotations using the FTP links from RefSeq with the download script[#2]

$ bash download_proteins.sh ftp_links.txt

This will download 10 the proteins FASTA file for each assembly.

Step 2: Separating into groups

We can use 9 of these assemblies to generate the protein clusters, hence graphs and use the last 1 to align back
to the grpahs generated. Therefore, we can mix all the proteins form 9 of these assemblies to generate the clusters
and leave one out for the alignment.

	Let’s keep one of these FASTA files for the alignments later, this one was chosen randomly

$ gzip -cd GCF_000006625.1_ASM662v1_protein.faa.gz > GCF_000006625.1_ASM662v1_protein.fasta && rm GCF_000006625.1_ASM662v1_protein.faa.gz

	We can now merge all sequences from the other 9 into one FASTA file

$ for f in *faa.gz;do gzip -cd $f >> all_proteins.fasta && rm $f;done

	You can use fasta_fastq_statistics.sh to calculate simple statistics on any FASTA or FASTQ file. However, it only accepts files where each sequence is contained in one line. Therefore, we can use this one-liner to remove the new lines in the sequence

$ awk '/^>/ {printf("\n%s\n",$0);next; } { printf("%s",$0);} END {printf("\n");}' < all_proteins.fasta | sed '/^$/d' > tmp && mv tmp all_proteins.fasta

$ bash scripts/fasta_fastq_statistics.sh all_proteins.fasta
61979 reads
27500039 total length
443.699 average read length

Step 3: Generating clusters with mmseqs

Now that we have all proteins from the 9 assemblies, we can cluster them using mmseqs.
The parameters chosen here are just an example, but this of course can be changed.

$./mmseqs easy-linclust all_proteins.fasta all_proteins_cluster tmp --min-seq-id 0.4
$ rm -r tmp/

After running mmseqs, we get several outputs, a table with cluster names and sequences in
the cluster all_proteins_cluster_cluster.tsv, a FASTA file with the representetive sequences
all_proteins_cluster_rep_seq.fasta, and a FASTA file with all sequences all_proteins_cluster_all_seqs.fasta.

We need each cluster to be in a separate FASTA file, you can then use scripts/extract_clusters.py
which a simple Python script that takes a simple txt file with sequences names and the FASTA file with all
sequences and an output directory, and it outputs the sequences of each cluster in a separate FASTA file:

$ cut -f1 all_proteins_cluster_cluster.tsv | uniq > cluster_names.txt
$ mkdir clusters
$ python3 scripts/extract_clusters.py cluster_names.txt all_proteins_cluster_all_seqs.fasta clusters/

Step 4: Generating MSAs from clusters

This, of course, can be done using many different MSA tools, for this tutorial we used clustalo,
where we first move all clusters that contain one sequence because there’s nothing to do, then we run
clustalo on each clusters to generate an MSA.

$ python3 /scripts/alignment_validation/move_1seq_file_to_msa.py clusters msas
$ for f ``ls -1 clusters/``;do ./clustalo --in clusters/$f > msas/$f;done

This will take some time to run as there are many clusters.

Step 5: MSA to GFA

Now that we have many MSAs, we can use PanPA to generate a graph for each MSA.

$ mkdir graphs
$ PanPA build_gfa -d msas/ -c 4 -o graphs

The build_index subcommand can take several cores and run in parallel, here we gave it 4 cores, and finished
converting all clusters to graphs in about 2 minutes on a standard laptop.

Step 6: Indexing

We need to also index the MSAs where we use the index to guide the alignment to which graphs to align to
as we have a 1 to 1 equivalency between an MSA and a GFA, if a seed points to e.g. MSA1 then we align to GFA1.
The user can choose several parameters for indexing and can increase or decrease the seed size depending
on the data used.

$ PanPA build_index -d msas/ --seeding_alg wk_min -k 5 -w 3 --seed_limit 0 -o index_k5_w3_no_limit.index

This step takes a bit more tan 1 minute

Step 7: Aligning

Finally, we have generated graphs and an index, we can give both of these to the align subcommand in
PanPA and some query sequences to do the alignments.

$ PanPA align -d graphs/ --index index_k5_w3_no_limit.index -r GCF_000006625.1_ASM662v1_protein.fasta --min_id_score 0.5 --seed_limit 30 -c 4 -o GCF_000006625.1_aligned.gaf

This subcommand can also take several cores which makes alignment faster. For these parameters
the aligment was done in about a minute.

Footnotes

[#1]
https://github.com/fawaz-dabbaghieh/PanPA/blob/main/tutorial/ftp_links.txt

[#2]
https://github.com/fawaz-dabbaghieh/PanPA/blob/main/tutorial/download_proteins.sh

Other Info

Some extra information about using PanPA and the output GAF format.

GAF Format

The GAF (Graph Alignment Format) was described here here[#1]. For PanPA, a couple more tags were added to keep all important information related to the alignments.

When aligning amino acid sequences against amino acid graphs, the tag gid gives the target graph where the query sequenced aligned.

when aligning DNA sequences using the argument --dna, where the frameshift aware alignment algorithm is used, another tag is added DNA which has two values, froward and reverse, indicating if the DNA query sequence was aligned in the forward or reverse complement direction.

DNA to DNA

PanPA was mainly designed to align amino acid and DNA sequences against amino acid graphs. It is possible though to also generate the index and graphs from MSA sequences in DNA alphabet. However, when aligning DNA query sequences back to these graphs, you do not need to use the --dna argument, as this argument tries to align DNA against amino acids and uses the frameshift aware alignment algorithm. However, you just need to omit the --dna argument, and use --sub_matrix dna which is basically edit distance (1 for a match, 0 for mismatch). Therefore, you might want to also change the gap penalty with --gap_score` argument. In this mode however, PanPA will not try to also align the reverse complement, so the user might want to provide this in the query sequence FASTA file.

For example PanPA align -d graphs_from_dna_seqs/ -r query_dna_sequences.fasta -o query_dna_sequences.gaf --sub_matrix dna --gap_score -1 -c 10

Footnotes

[#1]
https://github.com/lh3/gfatools/blob/master/doc/rGFA.md

Index

 nav.xhtml

 Table of Contents

 		
 PanPA

 		
 Subcommands

 		
 Building GFAs

 		
 Indexing MSAs

 		
 Align Query Sequences

 		
 Align to Single Graph

 		
 Full Experiment

 		
 Requirements

 		
 Data

 		
 Step 1: Download annotations

 		
 Step 2: Separating into groups

 		
 Step 3: Generating clusters with mmseqs

 		
 Step 4: Generating MSAs from clusters

 		
 Step 5: MSA to GFA

 		
 Step 6: Indexing

 		
 Step 7: Aligning

 		
 Other Info

 		
 GAF Format

 		
 DNA to DNA

_static/plus.png

_static/file.png

_images/pipeline_v3.png
r A
01110000
01100001
01101110
01110000

01100001
\

S

Index

Aligning

Query segquences

_static/minus.png

